

CASTABLES & OTHER MONOLITHICS

				7-570	
PRODUCT		KORACAST	KORACAST	ALMACAST	IREFCAST HB
Max. Service Temp.(°C)		1800	1750	1650	1600
Bulk densi	ity Kg/m2	2800	2730	2420	2290
(At 110° Crushing Kg/cm2 (Strength	>700	>700	>350	>400
	A1 ₂ O ₃ %	93-95	92-94	68-70	59-61
XSIS	Fe ₂ 0 ₃ %			1.5-2	1.5-2.5
CHEMICAL. ANALYSIS	Cao %	5-6	3-4	2-3	4-5
MICAL	SiO ₂ %		1-1.5	21-23	28-30
품	Cr ₂ O ₃ %				
	MgO %				
DESCRIPTION NOT SEXUAL TO NOT		Korundom Base Castable With High purity calcium - aluminate cement. High Mechanical Strength. Ustra Abrasion Resistant Excellent thermal shock resistance. Chemical Corrosion resistance. High Temperature application Ultra Low Iron.	Korundom Base Castable Vith High purity calcium aluminate cement. High Mechanical Strength. Ultra Abrasion Resistant. Excellent thermal shock resistance. Chemical Corrosion resistance. High Temperature application. Ultra Low Iron.	Korundom Base Castable With High purity calcium- aluminate cement High Mechanical Strength. High Abrasion Resistant. Excellent thermal shockresistance. Chemical Corrosionresistance High Temperature application. Low Iron.	High Alumina dense Castable with High purity calcium -aluminate cement. High Mechanical Strength. High Abrasion Resistant High thermal shock resistance. High Temperature application. Low Iron.
Kiln outlet Kiln of Cooler Cooler in Hot air duct inlet Hot air duct inlet Satellite Cooler Satellite Calciner Dry General use Combustion		Burner Kiln outlet Cooler inlet area Hot air duct inlet Satellite cooler Dryer Combustion chamber General use	Kiln outlet Cooler inlet area Hot air duct inlet Dryer Calciner Combustion chamber General use	Cooler inlet area Hot air duct inlet Dryer Calciner Combustion chamber General use	

High Alumina dense
Castable with High
purity calcium aluminate cement.
High Mechanical
Strength. High Abrasion
Resistant. High thermal
shock resistance. High
Temperature application.
Low Iron.

4-5

39-41

11-13

chromic Oxide base
Castable with High
purity calcium aluminate cement.
High Mechanical
Strength. Chemical
Corrosion resistance.
High Abrasion Resistant
High thermal shock
resistance. High
Temperature application.

5-6

2.5-3.5

26-29

Fireclay base, castable with low iron hydraulic binder Excellent strength throughout its entire temperature range High resistance to Mechanical impact and abrasion.
Light Handed Installation

9-11

31-34

Fireclay base,
castable with low
iron hydraulic binder.
Excellent strength
throughout its entire
temperature range
Excellent resistance to
Mechanical impact and
abrasion. Light Handed
Installation. Low Iron

9-11

35-37

Fireclay base castable with hydraulic binder. High strength throughout its entire temperature range. High resistance to Mechanical impact and abrasion. Light Handed Installation.

9-11

32-34

Cooler middle area
Hot air duct inlet
Dryer
Calciner
Combustion chamber
General use

Cooler
Hot air duct inlet
Dryer
Calciner Combustion
chamber
Riser ducts
General use

Cooler ceiling
Conical part of cyclones
cyclone ceiling Hot air
duct
Combustion chamber
Riser ducts
General use

Kiln inlet with high alkalies presence Cooler Hot air duct General use Conical part of cyclones cyclone ceiling Hot air duct Combustion chamber Riser ducts General use

CASTABLES & OTHER MONOLITHICS

No.				
PRODUCT		IREFCAST 23 ESC	IREFCAST 26	IREFCAST 23 ES
Max. Service Temp.(°C)		1316	1400	1260
Bulk densit	ty Kg/m2	2340	1650	1500
(At 110°C) Co Strength (At 11	Kg/cm2	>350	>70	>50
	A1 ₂ O ₃ %	41-44	42-46	37-40
SIS	Fe ₂ 0 ₃ %	7-8	4-6	5-7
CHEMICAL. ANALYSIS	Cao %	10-12	14-16	10-13
MICAL.	SiO ₂ , %	32-34	30-33	36-40
품 Cr ₂ O ₃ %		-	-	-
MgO %		-	-	-
DESCRIPTION		Coarse Fireclay base, castable with hydraulic binder. High strength throughout its entire temperature range High resistance to Mechanical impact and abrasion. Low shrinkage, goos resistance to spalling & thermal cycling	Light Weight Gunning Mix High Mechanical Strength Low Thermal Conductivity Low Water Absorbtion High Temperature Application Excellint volum stability, May be cast or gunned in place, Fast Erection	Light Weight CastableIntermediate Strength & Insulating Value - Hydraulic Bonded Castable. Low Thermal Conductivity Light Handed Installation High Temperature Application
APPLICATION AREA		Kiln inlet Cooler Hot air duct General use	Inspection doors in high temperature zones of preheater and cooler Hot repaires in preheaterand cooler Backlining insulating refractory General use	Inspection doors in midume temperature zones of preheater and cooler Backlining insulating refractory General use

Castable & Other Monolithic Refractories

IREFCAST 22	KROMCAST 22 (LI)	IREFCAST 23ES (LI)	MAGNESTTE MORTAR	MAGNOBOND
1200	1200	1260		
1100	1100	1500	-	
>40	>40	>50		
32-36	33-37	39-43	2-3	2-3
3-6	1.5-2	1.5-2	2.5-3.5	2.5-3.5
12-14	12-14	10-13	4-6	5-6
38-41	39-42	38-43	13-16	10-13
-	-	-	-	-
	-	-	72-74	67-70

Ultra light Weight Castable

High insulating value, good refractoriness. good strength, excellent resistance to thermal shock. Very Low Thermal **Conductivity Light Handed Installation**

Ultra light Weight Castable,Low Iron High insulating value, good refractoriness, good strength, excellent resistance to thermal shock. Very Low **Thermal Conductivity Light Handed** Installation

Ultra light Weight Castable, Low Iron High insulating value, good refractoriness, good strength, excellent resistance to thermal shock. **Very Low Thermal Conductivity Light Handed Installation**

Dry heat-setting magnesite mortar. suited for laying all types of basic brick in applications where a heat-setting basic mortar is required. **Chemical Corrosion** Resistance High **Temperature Application**

Extremely refractory air setting mortar with high magnesia content May be used successfully with other types of basic brick in all applications where a chemically basic mortar is required. Dry mortar having smooth working properties when mixed with water. **High Temperature** Application

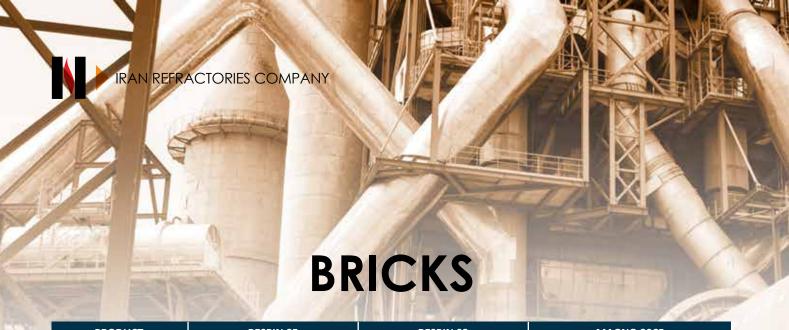
Inspection doors in low temperature zones of preheater and cooler

Backlining high insulating refractory

General use

Inspection doors in low temperature zones of high alkali content in preheater and cooler

Backlining high insulating and alkaly resist refractory 1 General use


Inspection doors in low temperature zoneof high alkali content in preheater and cooler

Backlining high

insulating and | alkaly resist refractor General use

Heat set mortar for rotary kiln bricklining

Air set mortar for burning and transitin zone of rotary Kiln bricklining Joint filling of damaged magnesite bricks

PRODUCT		RESPIN 85	RESPIN 92	MAGNO 80CF
Bulk	density	≥2.8	≥2.9	≥2.8
Cold Crush	ing Strength	≥400	≥400	≥450
Modulus	of Rupture	≥90	≥80	≥85
Apparent	porosity %	<20	<20	<18
	toriness load T05	>1650	>1750	>1650
	Al ₂ O ₃ %	10 – 13	10 – 13	10 – 13
	Fe ₂ 0 ₃ %	<1.5	<1.5	3-5
CHEMICAL ANALYSIS	Cao %	<2	<2	<2
CHEN	SiO₂, %	<1.5	<1.5	<1.5
	Cr ₂ O ₃ %	-	-	-
	MgO %	83 - 86	83 - 86	80 - 84

DESCRIPTION

Magnesia- Spinel brick with high pure dead burned magnesia and synthetic spinel.
Chrome free.
High Mechanical Strength,
Excelent resistance to thermomechanical shoks and chemical attackts.
High Temperature Application

Magnesia- Spinel brick with high pure dead burned magnesia and synthetic spinel.
Chrome free.
High Mechanical Strength,
Excelent resistance to thermomechanical shoks and chemical attackts.
High Temperature Application

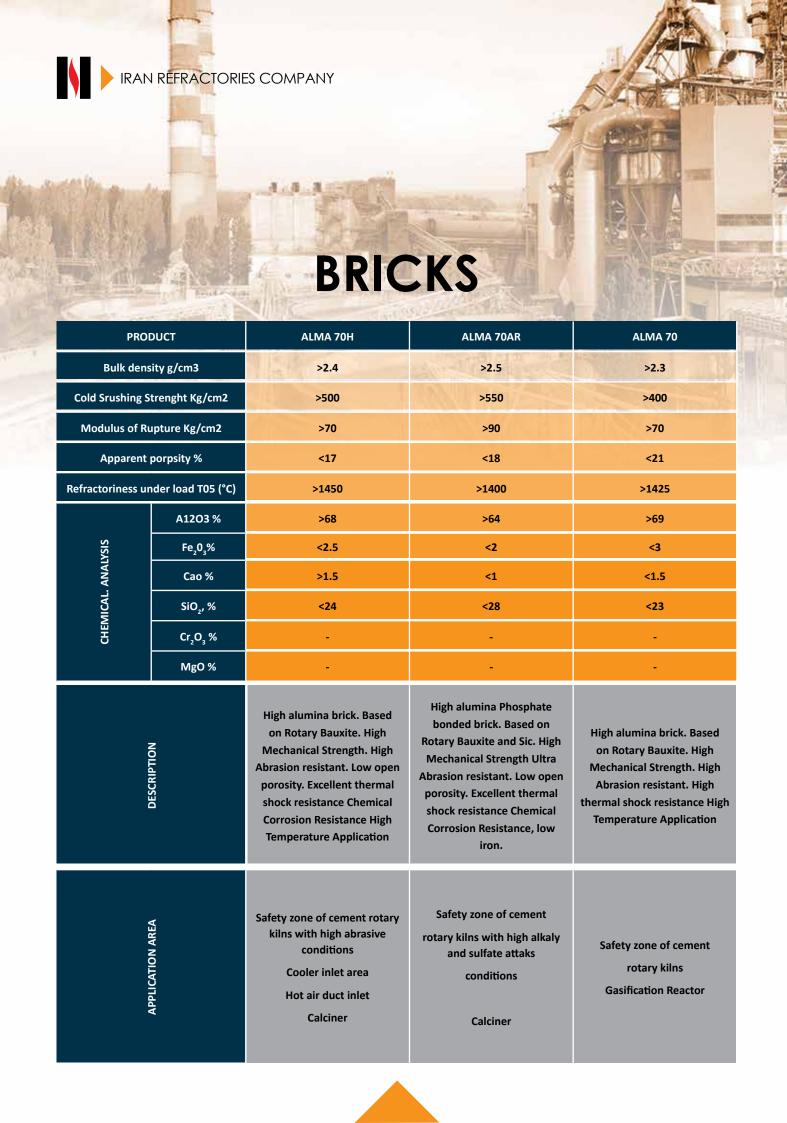
Magnesia- Spinel brick with high pure dead burned magnesia and synthetic spinel. High Iron content, Chrome free. High Mechanical Strength, Excelent resistance to thermomechanical shoks and chemical attackts. High Temperature Application, High Coating adherence.

APPLICATION AREA urning zone of cement rotary with high temperature opera

Lower and upeer transition zone of cement rotary kiln

Burning zone of cement rotary kiln with high chemical attaks

Lower and upeer transition zone of cement rotary kiln


Suitable for cement rotary kiln with high temperature operation

No hazardous for environment, non toxic

Burning zone of cement rotary kiln

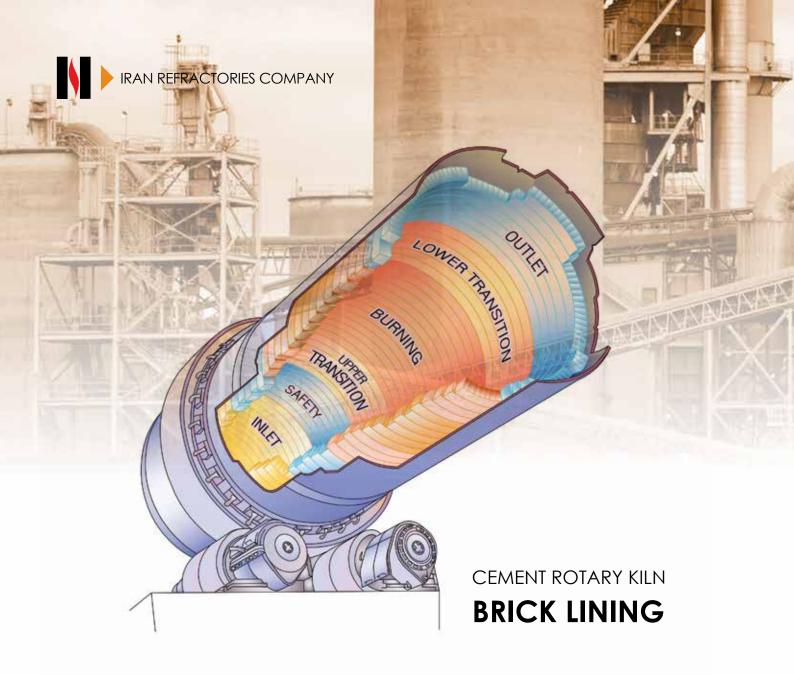
Physical and Chemical Properties of selected IREFCO Castable & Other Monolithic Refractories

MAGNO 80	RENO 70	ALMA 85SP	ALMA 80	ALMA 70SP
≥2.9	≥2.95	≥ 2.65	≥ 2.5	≥ 2.5
≥400	≥350	≥ 700	≥ 450	≥ 550
>40	>30	>200	>80	>180
<19	<19	<20	<22	<20
>1450	>1500	>1450	>1500	>1400
-	>68	>83	>78	>68
4.5-6.5	6-8	<2	<3	<2.5
<3	<2	-	-	-
<3	<3	<3 <10		<24
4-6	< 15		-	-
78-82	>65	-	-	-
Magnesia- Chrome brick with rich Iron dead burned magnesia (Alpine). Good Mechanical Strength, Excelent resistance to thermomechanical shoks&chemical attackts. Excelent coating adherence.	Magnesia- Chrome semi-direct bonded brick with high pure dead burned magnesia. High Mechanical Strength, Excelent resistance to thermomechanical shoks and chemical attackts.	ed brick High Mechanical High dead Strength Ultra Abrasion Strength a. High resistant Excellent resistante thermal shock resistance thermal shock resistance Chemical Corrosion Resistance, Low Iron.		High alumina, Phosphate bonded brick. High Mechanical Strength Ultra Abrasion resistant High thermal shock resistance Chemical Corrosion Resistance, Low Iron
Burning zone of cement rotary kiln	Lower and upper transition zone of cement rotary kilns with high chemical attaks Cooler inlet area Hot air duct inlet Calciner	Outlet zone of cement rotary kiln Cooler inlet area Hot air duct inlet Calciner	Safety zone of cement rotary kilns with high temperature operation Cooler inlet area Hot air duct inlet Calciner	Safety zone of cement rotary kilns with high abrasive conditions

Physical and Chemical Properties of selected IREFCO Castable & Other Monolithic Refractories

- I STATE OF THE REAL PROPERTY.			Annual Control of	
ALMA 60	ALMA 50	SEMIROM	SEMITHERM 35AR	GHESHLAGH
>2.35	>2.3	>2.3 >2.2		>2
>350	>400	>400	>420	>400
>70	>80	>85	>80	>85
<19	<17	<17	<12	<17
>1360	>1360	>1340	>1240	>1280
>58	>47	>40	<36	>42
<3	<2.5	<2	<1.5	<3
<2	-	-	-	-
<32	<49 <54		>57	<38
-	-	-	-	-
-	-	-	-	-
High alumina brick. Based on Bauxite. High Mechanical Strength High Abrasion resistant. High thermal shock resistance High TemperatureApplication	High alumina brick. Based on Bauxite. High Mechanical Strength. High Abrasion resistant. High thermal shock resistance High Temperature Application	Super duty Fireclay Brick High Mechanical Strength High Temperature Application low iron	Fireclay Silics base Bric High abration Strength Excellent alkali Resistance. no coating adhearenc Excellent Chemical Corrosion Resistance	High duty Fireclay Brick High Mechanical Strength High abration Strength.
Safety zone boarder of cement rotary kilns with normal operation	Safety zone boarder of cement rotary kilns with normal operation	Calcining zone of cement rotary kilns with normal operation Cyclones Riser ducts Tertiary air duct Cooler walls and ceiling General use	Calcining zone of cement rotary kilns with high alkaly and sulfate attaks conditions Upper parts of preheater	Tertiary air duct Upper parts of preheater Cooler walls General use

STANDARD SHAPE BRICKSFOR CEMENT ROTARY KILN


ISO STANDARD SHAPES (A SERIES)

2114	103	91.3	114	198	4	220	103	82	200	198
3114	103	95.2	114	198	707	320	103	89	200	198
4114	103	97.1	114	198		420	103	92.5	200	198
6114	103	99	114	198		620	103	96.2	200	198
8114	103	100	114	198		820	103	97.8	200	198
4114 2/3	68.7	62.8	114	198		420 2/3	68.7	58.2	200	198
4114 3/4	77.3	71.4	114	198		820 3/4	77.3	72.1	200	198
215	103	87.6	150	198		2225	103	79.8	225	198
315	103	92.7	150	198		3225	103	87.5	225	198
415	103	95.3	150	198		4225	103	91.4	225	198
615	103	97.9	150	198		6225	103	95.3	225	198
815	103	99	150	198		8225	103	97.2	225	198
415 2/3	68.7	61	150	198		4225 2/3	68.7	57.1	225	198
415 3/4	77.3	69.6	150	198		8225 3/4	77.3	71.5	225	198
218	103	84.0	180	198		225	103	77.3	250	198
318	103	90.5	180	198		325	103	85.8	250	198
418	103	93.5	180	198		425	103	90	250	198
618	103	97	180	198		625	103	94.5	250	198
818	103	98.3	180	198		825	103	96.5	250	198
418 2/3	68.7	59.2	180	198		425 2/3	68.7	55.7	250	198
418 3/4	77.3	67.8	180	198		825 3/4	77.3	70.8	250	198

218 B	78	65	180	198
318 B	77	67	180	198
418 B	75	68	180	198
618 B	74	69	180	198
418 4/5 B	70	65	180	198
418 5/4 B	85	75	180	198
120 B	88	55	200	198
220 B	78	65	200	198
320 B	77	67	200	198
420 B	75	68	200	198
620 B	74	69	200	198
820 B			200	198
420 4/5 B	70	65	200	198
820 5/4 B	85	75	200	198

				111
2225 B	78	65	225	198
3225 B	76.5	66.5	225	198
4225 B	75	68	225	198
6225 B	74	69	225	198
8225 B	73.5	69.5	225	198
4225 4/5 B	70	65	225	198
8225 5/4 B	85	75	225	198
225 B	80.8	62.1	250	198
325 B	78	65	250	198
425 B	76.5	66.5	250	198
625 B	74.5	68.5	250	198
825 B	73.8	69.3	250	198
425 4/5 B	70	65	250	198
825 5/4 B	85	75	250	198

OUTLET	ALMA 85SP/ALUM070LI
LOWER TRANSITION	RESPIN 85 / RENO 70
BURNING ZONE	MAGNO 80 / RESPIN 85
UPPER TRANSITION	RESPIN 85
SAFETY ZONE	ALMA 70 / ALMA 70SP ALMA 70H / ALUMO / ALUMO 60 LI
INLET	SEMIROM / SEMITHERM 35AR